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Nucleon = Proton and Neutron

Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

Dirac (1928) – pointlike fermion: µp =
e~

2M

Stern (1933) – µp = (1 + 1.79)
e~

2M

Big Hint that Proton is not a point particle

Proton has constituents

These are Quarks and Gluons

– the elementary quanta of Quantum Chromo-dynamics
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= ie ūe(P
′) γµ(−1) ue(P )

Nucleon’s relativistic electromagnetic current:

Jµ(P ′, P ) = ie ūp(P
′) Λµ(Q,P ) up(P ) , Q = P ′ − P

= ie ūp(P
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)

up(P )

GE(Q2) = F1(Q
2)−

Q2

4M2
F2(Q

2) , GM (Q2) = F1(Q
2)+F2(Q

2) .

Point-particle: F2 ≡ 0 ⇒ GE ≡ GM
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A central goal of nuclear physics is to understand the structure

and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD

So, what’s the problem?

Confinement

– No quark ever seen in isolation

Weightlessness

– 2004 Nobel Prize in Physics:

Mass of u− & d−quarks,

each just 5 MeV;

Proton Mass is 940 MeV

⇒ No Explanation Apparent

for 98.4 % of Mass HUGS 2005, 31/May–17/June 2005 – p. 6/45
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guess Mconstituent−quark ≈
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constituent quark + constituent antiquark

guess Mpion ≈ 2 ×
Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

What is “wrong” with the pion?
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JLab

Thomas Jefferson National Accelerator Facility

World’s Premier Hadron Physics Facility

Design goal (4 GeV) experiments began in 1995

Electrons accelerated by

repeated journeys along linacs

Once desired energy is

reached, Beam is directed into

Experimental Halls A, B and C

Current Peak

Electron Beam Energy

Nearly 6 GeV
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Walker et al., Phys.
Rev. D 49, 5671
(1994). (SLAC)

Jones et al., JLab Hall
A Collaboration, Phys.
Rev. Lett. 84, 1398
(2000)

Gayou, et al., Phys.
Rev. C 64, 038202
(2001)
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A Collaboration, Phys.
Rev. Lett. 88 092301
(2002)
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If JLab Correct, then

Completely

Unexpected Result:

In the Proton

– On Relativistic

Domain

– Distribution of

Quark-Charge

Not Equal

Distribution of

Quark-Current!
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What’s the Problem?

Must calculate the proton’s wave function

– Can’t be done using perturbation theory

So what? Same is true of hydrogen atom

Determination of proton’s wave function requires

ab initio nonperturbative solution

of fully-fledged relativistic quantum field theory

Modern Physics & Mathematics

– Still quite some way from being able to do that
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QCD
Action, in terms of local Lagrangian density:

S[Aa
µ, q̄, q] =

∫

d4x

{

1

4
F a

µν(x)F a
µν(x) +

1

2ξ
∂µAa

µ(x) ∂νAa
ν(x) + q̄(x) [γµDµ + M ] q(x)

}

(1)

Chromomagnetic Field Strength Tensor –
∂µAa

ν(x) − ∂νAa
µ(x) + gfabcAb

µ(x)Ac
ν(x)

Covariant Derivative – Dµ = ∂µ − ig
λa

2
Aa

µ(x)

Current-quark Mass matrix:

















mu 0 0 . . .

0 md 0 . . .

0 0 ms . . .

...
...

...

















Understanding JLab Observables means knowing all that this Action predicts.

Perturbation Theory (asymptotic freedom) is not enough!

Bound states are not perturbative

Confinement is not perturbative

DCSB is not perturbative
HUGS 2005, 31/May–17/June 2005 – p. 14/45
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Euclidean Metric
Almost all nonperturbative studies in relativistic quantum field theory employ a
Euclidean Metric. (NB. Remember the Wick Rotation?)

It is possible to view the Euclidean formulation of a quantum field theory as
definitive; e.g.,

Symanzik, K. (1963) in Local Quantum Theory (Academic, New York) edited
by R. Jost.

Streater, R.F. and Wightman, A.S. (1980), PCT, Spin and Statistics, and All
That (Addison-Wesley, Reading, Mass, 3rd edition).

Glimm, J. and Jaffee, A. (1981), Quantum Physics. A Functional Point of View
(Springer-Verlag, New York).

Seiler, E. (1982), Gauge Theories as a Problem of Constructive Quantum
Theory and Statistical Mechanics (Springer-Verlag, New York).

That decision is crucial when a consideration of nonperturbative effects becomes
important. In addition, the discrete lattice formulation in Euclidean space has
allowed some progress to be made in attempting to answer existence questions for
interacting gauge field theories.

A lattice formulation is impossible in Minkowski space – the integrand is not
non-negative and hence does not provid a probability measure.

HUGS 2005, 31/May–17/June 2005 – p. 15/45
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Euclidean Metric:
Transcription Formulae

To make clear our conventions: for 4-vectors a, b: a · b := aµ bν δµν :=
4

∑

i=1

ai bi ,

Hence, a spacelike vector, Qµ, has Q2 > 0.

Dirac matrices:

Hermitian and defined by the algebra {γµ, γν} = 2 δµν ;

we use γ5 := − γ1γ2γ3γ4, so that tr [γ5γµγνγργσ] = −4 εµνρσ , ε1234 = 1.

The Dirac-like representation of these matrices is:

~γ =





0 −i~τ

i~τ 0



 , γ4 =





τ0 0

0 −τ0



 , (2)

where the 2 × 2 Pauli matrices are:

τ0 =





1 0

0 1



 , τ1 =





0 1

1 0



 , τ2 =





0 −i

i 0



 , τ3 =





1 0

0 −1



 .

(3)

HUGS 2005, 31/May–17/June 2005 – p. 16/45
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Euclidean Metric:
Transcription Formulae

It is possible to derive every equation introduced above assuming certain analytic
properties of the integrands. However, the derivations can be sidestepped using
the following transcription rules:

Configuration Space

1.
∫ M

d4xM → −i

∫ E

d4xE

2. /∂ → iγE · ∂E

3. /A → −iγE · AE

4. AµBµ → −AE · BE

5. xµ∂µ → xE · ∂E

Momentum Space

1.
∫ M

d4kM → i

∫ E

d4kE

2. /k → −iγE · kE

3. /A → −iγE · AE

4. kµqµ → −kE · qE

5. kµxµ → −kE · xE

These rules are valid in perturbation theory; i.e., the correct Minkowski space
integral for a given diagram will be obtained by applying these rules to the
Euclidean integral: they take account of the change of variables and rotation of the
contour. However, for diagrams that represent DSEs which involve dressed n-point
functions, whose analytic structure is not known a priori, the Minkowski space
equation obtained using this prescription will have the right appearance but it’s
solutions may bear no relation to the analytic continuation of the solution of the
Euclidean equation. Any such differences will be nonperturbative in origin.

HUGS 2005, 31/May–17/June 2005 – p. 17/45
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What is QCD?

Gauge Theory:

Interactions Mediated by massless vector bosons

Similar interaction in QED

Special Feature of QCD – gluon self-interactions

Completely Change the Character of the Theory
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QED cf. QCD
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Q (GeV)
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α Q
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2
)

αQED =
α

1 − α/3π ln
(

Q2/m2
e

)

αQCD =
12π

(33 − 2Nf) ln (Q2/Λ2)

2004 Nobel Prize in Physics: Gross, Politzer and Wilczek
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Features of the Spectrum:

•
m2

ρ
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π
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m2
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m2
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= 1.7 ? Hyperfine Splitting

•
m2

π′
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π
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ρ′

m2
ρ

= 3.5 ? Excitation Energy

•
mN

mπ

≈ 7 •
mN

mρ

=
5

4
≈

3

2
? Quark Counting

N-N Interaction:
Range(Attraction) ≫ Range(Repulsion)

Something Very Odd About the Pion
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Dichotomy of the Pion

Pion responsible for long-range part of nucleon-nucleon

potential

Range ∝
1

Mparticle
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Dichotomy of the Pion

Pion responsible for long-range part of nucleon-nucleon

potential

Range ∝
1

Mparticle

. . . . . . . . . . . . . . . . .Pion better be light for long-range potential

How does one make an almost massless particle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . from two heavy constituents?

Not Allowed to do it by fine-tuning

That’s not an answer, it’s a contrivance

The correct understanding of hadron observables must explain

why the pion is light but the proton is heavy.

Requires explanation of Connection between pQCD-quark

and Spectrum/Constituent-quark
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QCD’s Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one cannot

liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

NSAC – Understanding these phenomena is one of the

greatest intellectual challenges in physics
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Chiral Symmetry

Helicity λ ∝ J · p

Projection of Spin onto Direction of Motion

Poincaré Invariant Spin-Observable

λ = ± (‖ or anti-‖ to pµ)

Chirality Operator: γ5

Chiral Transformation q(x) → eiγ5θ q(x)

Chiral Rotation θ =
π

2
qλ=+ → qλ=+, qλ=− → − qλ=−

Composite Particles: JP= + ↔ JP=−

Equivalent to “Parity Conjugation” Operation
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Chiral Symmetry

A Prediction of Chiral Symmetry

Degeneracy between Parity Partners
N( 1

2

+
, 938) = N( 1

2

−

, 1535), π(0−, 140) = a0(0
+, 980),

ρ(1−, 770) = a1(1
+, 1260)

Doesn’t Look too good
Predictions not Valid – Violations too Large.

Appears to suggest quarks are Very Heavy
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A Prediction of Chiral Symmetry

Degeneracy between Parity Partners
N( 1

2

+
, 938) = N( 1

2

−

, 1535), π(0−, 140) = a0(0
+, 980),

ρ(1−, 770) = a1(1
+, 1260)

Doesn’t Look too good
Predictions not Valid – Violations too Large.

Appears to suggest quarks are Very Heavy

How can pion mass be so small
If quarks are so heavy?!
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Propagators

Extraordinary Effects in QCD Tied to

Properties of Dressed-Quark and -Gluon Propagators

Quark Gluon

Sf(x − y) ≡ 〈qf(x)q̄f(y)〉 Dµν(x − y) ≡ 〈Aµ(x)Aν(y)〉

Describe in-Medium Propagation Characteristics

of Elementary Particles

HUGS 2005, 31/May–17/June 2005 – p. 24/45



First Contents Back Conclusion

Propagators

Example: Solid-State Physics

γ propagating in a Dense e− Gas

Acquires a Debye Mass

m2
D ∝ k2

F :
1

Q2
→

1

Q2 + m2
D

γ develops an Effective-mass
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Propagators

Example: Solid-State Physics

γ propagating in a Dense e− Gas

Acquires a Debye Mass

m2
D ∝ k2

F :
1

Q2
→

1

Q2 + m2
D

γ develops an Effective-mass

Leads to Screening of the Interaction: r ∝
1

mD

Quark and Gluon Propagators:

Modified in a similar way -

Momentum Dependent Effective Masses

The Effect of this is Observable in QCD

HUGS 2005, 31/May–17/June 2005 – p. 24/45



First Contents Back Conclusion

Explicit Chiral Symmetry Breaking

HUGS 2005, 31/May–17/June 2005 – p. 25/45



First Contents Back Conclusion

Explicit Chiral Symmetry Breaking

Chiral Symmetry

Can be discussed in terms of Quark Propagator
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Explicit Chiral Symmetry Breaking

Chiral Symmetry

Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Chiral Transformation

S0(p) → eiγ5θS0(p)eiγ5θ

=
−iγ · p

p2 + m2
+ e2iγ5θ m

p2 + m2

Symmetry Violation ∝m

m = 0: S0(p) → S0(p)
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Chiral Symmetry

Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Quark Condensate

〈q̄q〉µ ≡

∫ Λ

µ

d4p

(2π)4
tr [S(p)] ∝

∫ Λ

µ

d4p

(2π)4
m

p2 + m2

A Measure of the Chiral Symmetry Violating Term
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Explicit Chiral Symmetry Breaking

Chiral Symmetry

Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Quark Condensate

〈q̄q〉µ ≡

∫ Λ

µ

d4p

(2π)4
tr [S(p)] ∝

∫ Λ

µ

d4p

(2π)4
m

p2 + m2

A Measure of the Chiral Symmetry Violating Term

Perturbative QCD: Vanishes if m = 0
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Dynamical Symmetry Breaking

V (x, y) = (σ2 + π2 − 1)2

Hamiltonian: T + V , is Rotationally Invariant
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•
Ground State

Ball at any (σ, π)

for which σ2 + π2 = 1

All Positions have Same (Minimum) Energy

But not invariant under rotations

Symmetry of Ground State 6= Symmetry of Hamiltonian
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Dynamics and Symmetries

Confinement:

NO quarks or gluons have ever reached a detector alone

Chirality = Projection of spin onto direction of motion
Quarks are either left- or right-handed

Chiral Symmetry:

To classical QCD interactions,

left- and right-handed quarks are IDENTICAL

Challenge – Connect

Dynamical Symmetry Breaking and Confinement

Start with Massless Quarks and

through Interactions Alone, Generate Massive Quarks

Mass from Nothing
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Dynamics and Symmetries

Very Nonperturbative Problem
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Dyson-Schwinger Equations

A Modern Method for Relativistic Quantum Field Theory

NonPerturbative, Continuum approach to QCD

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence
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Dyson-Schwinger Equations

A Modern Method for Relativistic Quantum Field Theory

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

· Quark & Gluon Confinement

⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
2)

Method yields Schwinger Functions ≡ Propagators

Cross-Sections built from Schwinger Functions
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Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equationdressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory
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Dressed-quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equationdressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

But in Perturbation Theory

B(p2) = m

(

1 −
α

π
ln

[

p2

m2

]

+ . . .

)

m→0
→ 0
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Nambu–Jona-Lasinio Model
Recall the Gap Equation:

S−1(p) = iγ · p A(p2) + B(p2) = iγ · p + m

+

∫

Λ d4ℓ

(2π)4
g2 Dµν(p − ℓ) γµ

λa

2

1

iγ · ℓA(ℓ2) + B(ℓ2)
Γa

ν(ℓ, p) (4)

NJL: Γa
µ(k, p)bare = γµ

λa

2
;

g2Dµν(p − ℓ) → δµν
1

m2

G

θ(Λ2 − ℓ2) (5)

Model is not renormalisable
⇒ regularisation parameter (Λ) plays a dynamical role.

NJL Gap Equation

iγ · p A(p2) + B(p2)

= iγ · p + m +
4

3

1

m2

G

∫

d4ℓ

(2π)4
θ(Λ2 − ℓ2) γµ

−iγ · ℓA(ℓ2) + B(ℓ2)

ℓ2A2(ℓ2) + B2(ℓ2)
γµ

(6)
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Solving NJL Gap Equation

Multiply Eq. (6) by (−iγ · p); trace over Dirac indices:

p2 A(p2) = p2 +
8

3

1

m2

G

∫

d4ℓ

(2π)4
θ(Λ2 − ℓ2) p · ℓ

A(ℓ2)

ℓ2A2(ℓ2) + B2(ℓ2)
(7)

Angular integral vanishes, therefore

A(p2) ≡ 1 . (8)

This owes to the the fact that NJL model is defined by four-fermion contact
interaction in configuration space, entails momentum-independence of interaction
in momentum space.

Tracing over Dirac indices; use Eq. (8):

B(p2) = m +
16

3

1

m2

G

∫

d4ℓ

(2π)4
θ(Λ2 − ℓ2)

B(ℓ2)

ℓ2 + B2(ℓ2)
, (9)

Integral is p2-independent.

Therefore B(p2) = constant = M is the only solution.
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NJL Mass Gap

Evaluate integrals; Eq. (9) becomes

M = m + M
1

3π2

1

m2

G

C(M2, Λ2) , (10)

C(M2, Λ2) = Λ2 − M2 ln
[

1 + Λ2/M2
]

. (11)

Λ defines model’s mass-scale. Henceforth set Λ = 1 . Then all other
dimensioned quantities are given in units of this scale, in which case the gap
equation can be written

M = m + M
1

3π2

1

m2

G

C(M2, 1) . (12)

Chiral limit: m = 0, M = M
1

3π2

1

m2

G

C(M2, 1)

Solved if M ≡ 0

. . . This is the perturbative result : start with no mass, end up with no mass.

Suppose M 6= 0

Solved iff 1 =
1

3π2

1

m2

G

C(M2, 1) .
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NJL Dynamical Mass

Can one satisfy 1 =
1

3π2

1

m2

G

C(M2, 1) ?

C(M2, 1) = 1 − M2 ln
[

1 + 1/M2
]

Monotonically decreasing function of M

Maximum value at M = 0: C(0, 1) = 1.

Consequently ∃ M 6= 0 solution iff
1

3π2

1

m2

G

> 1

Typical scale for hadron physics Λ ∼ 1 GeV.

M 6= 0 solution iff m2

G <
Λ2

3π2
≃ (0.2 GeV )2

Interaction Strength is proportional to
1

m2

G

When interaction is strong enough,
one can start with no mass but end up with a massive quark.
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NJL Dynamical Mass

Can one satisfy 1 =
1

3π2

1

m2

G

C(M2, 1) ?

C(M2, 1) = 1 − M2 ln
[

1 + 1/M2
]

Monotonically decreasing function of M

Maximum value at M = 0: C(0, 1) = 1.

Consequently ∃ M 6= 0 solution iff
1

3π2

1

m2

G

> 1

Typical scale for hadron physics Λ ∼ 1 GeV.

M 6= 0 solution iff m2

G <
Λ2

3π2
≃ (0.2 GeV )2

Interaction Strength is proportional to
1

m2

G

When interaction is strong enough,
one can start with no mass but end up with a massive quark.

Dynamical Chiral Symmetry Breaking
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NJL Dynamical Mass

0.1 0.2 0.3 0.4 0.5 0.6
mG

0

0.1

0.2

0.3

0.4

M
(m

G
)

Complete Solution
mG= 0.186

m0= 0.01

NJL Mass Gap
Solve M = m0 + M

1

3π2

1

m2

G

C(M2, 1)

Weak coupling:
⇔ mG large
M ∼ m0

Strong coupling:
⇔ mG small
M ≫ m0

This is the
essential
characteristic
of DCSB
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Confinement – no free-particle-like quarks
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NJL Model and Confinement?

Confinement – no free-particle-like quarks

Fully-dressed NJL propagator

S(p)NJL =
1

iγ · p[A(p2) = 1] + [B(p2) = M ]
=

−iγ · p + M

p2 + M2
(15)
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NJL Model and Confinement?

Confinement – no free-particle-like quarks

Fully-dressed NJL propagator

S(p)NJL =
1

iγ · p[A(p2) = 1] + [B(p2) = M ]
=

−iγ · p + M

p2 + M2
(17)

This is merely a free-particle-like propagator with a shifted mass:

p2 + M2 = 0 ⇒ Minkowski-space mass = M. (18)
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NJL Model and Confinement?

Confinement – no free-particle-like quarks

Fully-dressed NJL propagator

S(p)NJL =
1

iγ · p[A(p2) = 1] + [B(p2) = M ]
=

−iγ · p + M

p2 + M2
(19)

This is merely a free-particle-like propagator with a shifted mass:

p2 + M2 = 0 ⇒ Minkowski-space mass = M. (20)

Hence, while NJL Model certainly contains DCSB,
it does not exhibit confinement .
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Munczek-Nemirovsky Model

Munczek, H.J. and Nemirovsky, A.M. (1983), “The Ground State
qq̄ Mass Spectrum In QCD,” Phys. Rev. D 28, 181.

Γa

µ
(k, p)bare = γµ

λa

2
;

g2Dµν(k) → (2π)4 Gδ4(k)

[

δµν −
kµkν

k2

]

(21)

Here G defines the model’s mass-scale.

δ-function in momentum space
cf. NJL, which has δ-function in configuration space.

Gap equation

iγ ·p A(p2)+B(p2) = iγ ·p+m+Gγµ

−iγ · p A(p2) + B(p2)

p2A2(p2) + B2(p2)
γµ (22)
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MN Model’s Gap Equation

The gap equation yields the following two coupled equations (set
the mass-scale G = 1):

A(p2) = 1 + 2
A(p2)

p2A2(p2) + B2(p2)
(23)

B(p2) = m + 4
B(p2)

p2A2(p2) + B2(p2)
, (24)

Consider the chiral limit equation for B(p2):

B(p2) = 4
B(p2)

p2A2(p2) + B2(p2)
. (25)

Obviously, B ≡ 0 is a solution.

Is there another?
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DCSB in MN Model

The existence of a B 6≡ 0 solution; i.e., a solution that dynamically breaks chiral
symmetry, requires (in units of G)

p2A2(p2) + B2(p2) = 4 . (26)

Substituting this identity into equation Eq. (23), one finds

A(p2) − 1 =
1

2
A(p2) ⇒ A(p2) ≡ 2 , (27)

which in turn entails
B(p2) = 2

√

1 − p2 . (28)

Physical requirement: quark self energy is real on the spacelike domain ⇒

complete chiral-limit solution –

A(p2) =







2 ; p2 ≤ 1

1

2

(

1 +
√

1 + 8/p2

)

; p2 > 1
(29)

B(p2) =







√

1 − p2 ; p2 ≤ 1

0 ; p2 > 1 .
(30)

NB. Dressed-quark self-energy is momentum dependent, as is the case in QCD.
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Confinement in MN Model

Solution is continuous and defined for all p2,
even p2 < 0; namely, timelike momenta.

Examine the propagator’s denominator:

p2 A2(p2) + B2(p2) > 0 , ∀ p2 . (31)

This is positive definite . . . there are no zeros

This is nothing like a free-particle propagator. It can be interpreted
as describing a confined degree-of-freedom

Note that, in addition there is no critical coupling: the nontrivial
solution exists so long as G > 0.

Conjecture: All confining theories exhibit DCSB .

NJL model demonstrates that converse is not true.
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Massive Solution in MN Model

In the chirally asymmetric case the gap equation yields

A(p2) =
2 B(p2)

m + B(p2)
, (32)

B(p2) = m +
4 [m + B(p2)]2

B(p2)([m + B(p2)]2 + 4p2)
. (33)

Second is a quartic equation for B(p2).

Can be solved algebraically with four solutions, available in a
closed form.

Only one has the correct p2 → ∞ limit: B(p2) → m.

NB. The equations and their solutions always have a smooth
m → 0 limit, a result owing to the persistence of the DCSB
solution.
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MN Dynamical Mass

-2 -1 0 1 2 3 4 5
s

0

0.5

1

1.5

M
(s

)

M(s) Munczek-Nemirovsky
M(s) = 0.015

M(s) = |s|
1/2

, s<0

M(s = p2) =
B(s)

A(s)

Large s:
M(s) ∼ m0

Small s

M ≫ m0

This is the
essential
characteristic
of DCSB

p2-dependent
mass function is
quintessential
feature of QCD.

No solution of
s + M(s)2 = 0

confinement .
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Real World Alternatives

0 1 10 100

Q (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

G(Q)

g2D(Q2) = 4π
G(Q2)

Q2

G(0) < 1:
M(s) ≡ 0 is only
solution for m = 0.

G(0) ≥ 1

M(s) 6= 0 is
possible and
energetically
favoured: DCSB.

M(0) 6= 0 is a
new, dynamically
generated
mass-scale. If it is
large enough, it
can explain how a
theory that is

apparently massless (in the Lagrangian) possesses the spectrum of a massive theory.
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Mathematics and Physics still far from being able to
accomplish that
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices

Nonperturbative modifications should have observable
consequences
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Overview

Confinement and Dynamical Chiral Symmetry Breaking are Key
Emergent Phenomena in QCD

Understanding requires Nonperturbative Solution of Fully-Fledged
Relativistic Quantum Field Theory

Confinement and DCSB are expressed in QCD’s propagators and
vertices

Dyson-Schwinger Equations are a useful analytical and numerical
tool for nonperturbative study of relativistic quantum field theory

Simple models (NJL) can exhibit DCSB

DCSB 6⇒ Confinement

Simple models (MN) can exhibit Confinement

Confinement ⇒ DCSB

What’s the story in QCD?
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